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Compression of Multispectral Images

M. Klimesh
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Compression of multispectral images (obtained from sensors that sample in both
the spatial and the spectral domains) is important for reducing the transmission
and storage requirements of such data. This article describes versatile software
developed to simulate a family of compression algorithms. Two algorithms are
selected as the most suitable for implementation. The first is a moderately high
complexity algorithm consisting of the Karhunen—Loéve transform (KLT) in the
spectral dimension, the discrete cosine transform (DCT) for spatial decorrelation
of the resulting bands, and the DCT on the residual. The other is a medium-
complexity algorithm that uses predictive coding for spectral decorrelation and the
DCT for spatial decorrelation. Performance results are given for these algorithms.
A low-complexity algorithm is also discussed.

[. Introduction

A multispectral image is a data set with two spatial dimensions and a spectral dimension. These images
are obtained from a multispectral scanner (or imaging spectrometer) on board an aircraft or spacecraft.
Due to the spectral and spatial detail of multispectral images, they have a wide variety of Earth remote-
sensing uses in studies of the oceans (including sea ice), the atmosphere (including cloud cover), and land.
Specific applications include global environmental monitoring, mapping, natural resource management,
and land use planning. Fine spectral resolution allows for applications such as estimation of crop health
and yields, evaluation of vegetation stresses, and selective mapping of various aerosols over clear water
[4]. Multispectral scanners also are used in deep-space missions to map the surface spatial distribution of
the mineral and chemical features of various targets such as planets and their satellites. For example, the
Cassini visible and infrared mapping spectrometer subsystem (VIMS) will gather multispectral images of
Saturn, its rings, and its satellites.

Existing and proposed multispectral scanners for Earth remote sensing produce multispectral image
data at rates ranging from about 4 Mb/s to more than 4 Gb/s. Multispectral scanners for use in deep-
space missions produce data at a somewhat lower rate but still produce enormous data sets. In order to
make transmission and storage of these data practical and less expensive, it is advantageous to compress
these data. In particular, a spacecraft with a multispectral scanner may be unable to transmit all of the
image data it produces in uncompressed form due to the rate limitation of its communication link; thus,
onboard compression is needed to make full use of the scanner.

In this article, we investigate multispectral image compression techniques. All of our tests are done
on an airborne visible and infrared imaging spectrometer (AVIRIS) data set. This data set contains
224 spectral bands, two of which are shown in Fig. 1.



Fig. 1. Two spectral bands from an AVIRIS image: (a) band 60 and (b) band 140.

We focus on lossy compression techniques that have the potential for being suitable for onboard
compression. In a later article, we plan to give a discussion of the considerations used in selecting the
algorithms, a detailed literature survey, a comprehensive discussion of the algorithms implemented, and
several possible improvements.

II. The Compression Software

In order to test a large number of algorithms and variations, we developed C software to determine the
performance of a variety of algorithms. The individual components of this general algorithm have been
used for multispectral image compression in other studies. For example, the Karhunen—Loeve transform
(KLT) has been used in a similar way in [5,9,10], predictive coding has been used in a similar way in [1],
and the use of the discrete cosine transform (DCT) for spatial decorrelation is very common [8]. The
selective combination of these steps results in several algorithms, some of which are novel.

In the following, we describe our general compression algorithm. As we will discuss shortly, by elimi-
nating certain steps and varying some of the algorithm parameters, we obtain different algorithms with
various performance and complexity characteristics.

The major steps performed by our general algorithm are as follows:

(1) Scale the data: So that different spectral bands can be encoded at different fidelities, each
band is independently linearly scaled. In our tests, the scaling factors were all greater
than or equal to one and resulted in most bands having root-mean-squared (RMS) sensor
noise levels that were in the range of 50 to 100 (a few were higher). Most scaled bands
had a range of about 30,000. The same scaling was used for all of our tests.

(2) Perform the KLT in the spectral dimension: This transform is adaptive in that the trans-
form is recomputed for each xyr X yxr (spatial) block of the image. This computation
may be performed using the statistics from the original data (in which case the trans-
form parameters must be transmitted as overhead) or from the final reconstructed image
based on the xyrr X yxrr block to the left of the block to be transformed (in which case
no overhead is required except for the first block in each row).

(3) Compress the KLT bands: The ny;r most-significant (highest-energy) KLT-transformed
bands are compressed using the DCT (on nper X nper blocks), uniform quantization of
the resulting coefficients (step size gxir), and entropy coding of the quantized coeflicients.
The remaining KLT-transformed bands are discarded.



(4) Compute the residual: Invert Steps (3) and (2) to obtain an approximation of the original
multispectral image block. Then form a difference image by subtracting this approxima-
tion from the original image. We refer to this multispectral difference image as difference
image 1 (DI1). If no KLT transform is performed (by setting ny;r = 0), then DI1 is the
original image.

(5) Compress the residual (DI1) bands: One Zpred X Ypred (Spatial) block is compressed at a
time. Within each of these blocks, compress the bands consecutively as follows:

(a) (Optional.) Estimate the DI1 band from the previous (reconstructed) DI1 bands.
A first-, second-, or third-order affine predictor is used (the order indicates how
many previous bands are used to estimate a value). The predictor parameters
may be computed using the actual DI1 (in which case these parameters must be
transmitted as overhead) or they may be computed from the final reconstructed
DI1 of the ®pred X Ypreda block to the left of the current one (in which case no
overhead is required except for the first block of each row).

(b) Subtract the prediction from DI1, forming difference image 2 (DI2). If no pre-
diction was performed, then DI2 is identical to DI1.

(c) (Optional.) Encode DI2 using the DCT (on nper X nper blocks) with a fixed
uniform quantizer (step size gpor) and entropy coding of the resulting quantized
coefficients.

(d) Reconstruct DI2 by inverting Step (5¢) and subtract this reconstructed DI2 from
the actual DI2, forming difference image 3 (DI3).

(e) (Optional.) Encode DI3 using a fixed uniform quantizer (step size gana) and
entropy coding of the resulting coefficients.

Figure 2 contains a block diagram of some of the steps performed by this algorithm. Steps (2) through
(4) can be effectively skipped by choosing ny;r = 0; this eliminates the KLT. Although the KLT is
the best linear transform for performing spectral decorrelation, in some cases the rate-distortion perfor-
mance improvement resulting from its use does not justify its relatively high computational complexity.
Steps (5a) and (5b) may be skipped by choosing no prediction. If the spectral decorrelation achieved by
the KLT transform is adequate, these predictive coding steps may not result in a performance improve-
ment. Steps (5¢) and (5e) are optional. If DI2 does not contain significant spatial correlation, then it may
be appropriate to use the straight quantization of Step (5e) rather than the DCT coding of Step (5c¢).
Even if the DCT step is included, it may be reasonable to also use straight quantization to reduce the
maximum difference between the original and reconstructed images.

We require that zy,r must be a multiple of xpreq, which must be a multiple of npcr. Similarly, yxir
must be a multiple of ypreq, Which must be a multiple of nycr. The meanings of these parameters are
illustrated in Fig. 3. For our experiments, we always use npcr = 8. A prediction block is a spatial region
where the estimator of the pixel values of a given band is a fixed function of the pixel values in the
adjacent spectral bands (but varies with the band being estimated), and a KLT block is a spatial region
where, for each spatial location, the spectral samples are transformed by the same orthogonal transform.

A. Observations

The general algorithm compresses sections of (usually yx;r) rows of the image (including all bands)
separately. This property could be utilized to confine the effects of a channel error to one such section if
appropriate synchronization markers are inserted between the sections.



ENTROPY

|

|

IMAGE BLOCK —pp|(D) SCALE L 1(2) 1 [igef pcT || QuANTIZE CODING | |
|

4

BANDS

U S _——

KLT DCT

R , '

5) COMPRESS COMPRESSED IMAGE
> RESIDUAL P> BLOCK DATA

|
@) |
|
— INVERSE |
é > 1 INVERSE « I
|

Fig. 2. The steps the general algorithm performs onan  x, 1 by y 1 block of the image,
without the details of Step (5).
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Fig. 3. The various blocks used by the general algorithm,
with Npct =8, Xpred = Ypred = 16, and X7 = Vit = 32.

In our tests, Step (5e) appears never to reduce the mean-squared error (MSE) of the reconstructed im-
age. However, this step does limit the maximum error of a sample. Note that we use uniform quantization
in this step (and the other quantization steps), which does not yield optimal performance [3].

Perhaps not surprisingly, for the cases we tested, the interband prediction steps [Steps (5a) and (5b)]
produced no performance improvement when the KLT was used.

B. The KLT Algorithm

The recommended high-performance algorithm, which we refer to as the KLT algorithm, consists of the
KLT, the DCT on the transformed bands, and the DCT on the residual. That is, Steps (1) through (4)
and Step (5c) are included from our general algorithm. Although the DCT on the residual generally
adds rate without significantly improving the performance in terms of MSE, it is important for accurate
reconstruction of exceptional features of the images. Also, this step is needed if overhead is to be saved by
computing the KLT parameters from the reconstructed image blocks, which may result in a net reduction
in rate.



We use Txir = Yxrr = 32, and we vary gxur, goor, and ngpr to try to achieve the best performance. For
most of our tests, we compute the KLT parameters from previously reconstructed horizontally adjacent
image blocks (when possible) to minimize overhead.

C. The Interband Prediction Algorithm

For reduced complexity, we eliminate the KLT computation. We refer to this moderate-complexity
algorithm as the interband prediction algorithm; it consists of the interband prediction in conjunction
with the DCT. Only Step (1) and Steps (5a) through (5¢) are included from our general algorithm.

In our tests, we use Zpred = Ypred = 16 and vary the predictor order. The value of ¢por is varied
to obtain the desired root-mean-squared error (RMSE). We minimize overhead by estimating predictor
parameters from horizontally adjacent reconstructed values.

[1l. Performance

The KLT algorithm and the interband prediction algorithm were tested on a 608 x 512 AVIRIS image
with 224 spectral bands. The performance will vary for images obtained from other multispectral scanners
(due to differences in the type and number of spectral bands, the spatial resolution, the sensor noise, and
other factors) and, to a lesser extent, for different images from the same scanner; however, the same trends
will be observed. The original data were gathered with 10-bit samples. Some of our tests were performed
on a subset of the bands. Tables 1 and 2 contain some representative results. The bit rates are estimated
from an entropy measurement of the quantized coefficients; the rates are slightly pessimistic because some
bits are left uncoded and correlations between the coefficients, which likely would be exploited in practice,
are ignored. In these tables, the total bit rate includes all of the overhead necessary to decompress the
image. Rates are expressed in bits/pixel/band (b/p/band).

Table 1. Sample compression performance results.

Method Spectral RMSE Total rate,

bands b/p/band
Prediction, first order 20 100 0.94
Prediction, second order 20 100 0.72
KLT algorithm 20 100 0.37
KLT algorithm 224 85 0.20

Compression results in Table 2 show the bit rates required to obtain an RMSE of 50. The algorithm
and parameters used are indicated. Table 2 also lists the number of reconstruction errors that have a
magnitude above a certain threshold (chosen to illustrate the differences between the algorithms); a small
value suggests more accurate reconstruction of exceptional features of the image. It is instructive to note
that the KLT algorithm has very little advantage over the interband prediction algorithm at this RMSE,
due to the noise in the original image. Figure 4 further compares the performance of the KLT algorithm
to that of the interband prediction algorithm.

The RMSE value of 100 represents very high fidelity compression, since we have multiplied most bands
by constants that give RMS sensor noise levels of around 50 to 100. For this RMSE, typical bands have
a signal variance-to-quantization (compression) noise ratio of about 27 dB. Because of the large dynamic
range of the sensor (the high end of which is seldom reached), the traditional peak signal-to-quantization
noise ratio (PSNR) is not very meaningful. However, it could be estimated at 49 dB (for an RMSE
of 100).



Table 2. Compression performance for compression of all 224 bands

with an overall RMSE of 50 (the KLT algorithms use

Number of

gL = 10).

Rate, b/p/band

Method Parameters large errors®

(band 60) Partial®  Total

Prediction, second order gper = 205 24 0.826 0.829
T 2

KLT /overhead® dpor = 243, 1T _ = 63 0.604 0.722
dpct 3
2

KLT gper = 232, T = 2 72 0727 0.733
dpcr 3

KLT goer = 230, 9L — 77 0.716 0.722

dpct

3

KLT Goer = 226, T4 = = 70 0.722 0.728
dpct 2

2This column shows the number of errors with magnitude greater than 200.

b The partial rate is the bit rate without the overhead of the KLT or prediction parameters.

¢The KLT/overhead method uses the original data to compute the KLT, using overhead

for the KLT

150

125

100

75

RMSE

50

25

parameters.
T T T T T T
B —— KLT N
—&— INTERBAND PREDICTION
| | | | | |
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

TOTAL RATE, b/p/band

Fig. 4. Rate distortion performance of the KLT and interband
prediction algorithms, where  n,,; = 10 and gpct = gy 7 for the
KLT algorithm, and second-order prediction was used in the
interband prediction algorithm.

At an RMSE of 100, the reconstructed bands are completely indistinguishable from the originals, even
when magnified, when displayed on a monitor that can display 256 shades of gray.

The interband prediction algorithm also was tested with a third-order predictor, but the improvement
over the second-order predictor was insignificant.



IV. Low-Complexity Compression

If extremely high fidelity image reconstructions are desired, or if the interband prediction algorithm
is too complex to implement, then it may be useful to consider a low-complexity algorithm. Although
we did not test such an algorithm, it is reasonable to believe that the performance cost of using a simple
algorithm diminishes as the quantization noise becomes much smaller than the sensor noise, because
(conceptually) much of the bit rate is allocated to the compression of sensor noise, which is difficult
to compress. One low-complexity algorithm is the use of some form of predictive coding (in all three
dimensions) with very fine quantization steps, possibly in conjunction with some form of trellis-coded
quantization [2,6,7]. This type of compression is not covered by our general algorithm.

V. Conclusion

We have described a general program for simulating a family of multispectral image compression
algorithms. Two algorithms from this family have been discussed in detail, and performance results were
presented. Very high fidelity compression is possible at bit rates as low as 0.2 b/p/band. We also have
suggested a possible algorithm for use when complexity is a limiting constraint. Careful consideration of
compression requirements is necessary for selecting an algorithm for a particular mission; however, we
have provided a basis for evaluating the complexity /performance trade-offs involved.
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